Adversarial Alignment for Source Free Object Detection

نویسندگان

چکیده

Source-free object detection (SFOD) aims to transfer a detector pre-trained on label-rich source domain an unlabeled target without seeing data. While most existing SFOD methods generate pseudo labels via source-pretrained model guide training, these usually contain high noises due heavy discrepancy. In order obtain better supervisions, we divide the into source-similar and source-dissimilar parts align them in feature space by adversarial learning.Specifically, design variance-based criterion domain. This is motivated finding that larger variances denote higher recall similarity Then incorporate module mean teacher framework drive spaces of two subsets indistinguishable. Extensive experiments multiple cross-domain datasets demonstrate our proposed method consistently outperforms compared methods. Our implementation available at https://github.com/ChuQiaosong.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Adversarial Image Alignment and Interpolation

Volumetric (3d) images are acquired for many scientific and biomedical purposes using imaging methods such as serial section microscopy, CT scans, and MRI. A frequent step in the analysis and reconstruction of such data is the alignment and registration of images that were acquired in succession along a spatial or temporal dimension. For example, in serial section electron microscopy, individua...

متن کامل

Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection

We exploit image features multiple times in order to make sequential decision process faster and better performing. In the decision process features providing knowledge about the object presence or absence in a given detection window are successively evaluated. We show that these features also provide information about object position within the evaluated window. The classification process is s...

متن کامل

Source Retrieval and Text Alignment Corpus Construction for Plagiarism Detection

For the task of source retrieval, we focus on the process of Download Filtering. For the process from chunking to search control, we aim at high recall, and for the process of download filtering, we devote to improve precision. A vote-based approach and a classification-based approach are incorporated to filter the searching results to get the plagiarism sources. For the task of text alignment ...

متن کامل

Generative Adversarial Source Separation

Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multilayer perceptron trained with a Wasserstein-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i1.25119